|
In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 24-cell. There are 2 unique degrees of cantellations of the 24-cell including permutations with truncations. ==Cantellated 24-cell== |- |bgcolor=#e7dcc3|Coxeter diagram |colspan=2| |- |bgcolor=#e7dcc3|Cells |144 |24 (3.4.4.4) 24 (3.4.3.4) 96 (3.4.4) |- |bgcolor=#e7dcc3|Faces |720 |288 triangles 432 squares |- |bgcolor=#e7dcc3|Edges |colspan=2| 864 |- |bgcolor=#e7dcc3|Vertices |colspan=2| 288 |- |bgcolor=#e7dcc3|Vertex figure |colspan=2| Irreg. triangular prism |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|F4, () |- |bgcolor=#e7dcc3|Properties |colspan=2|convex |- |bgcolor=#e7dcc3|Uniform index |colspan=2|''24'' 25 ''26'' |} The cantellated 24-cell or small rhombated icositetrachoron is a uniform 4-polytope. The boundary of the cantellated 24-cell is composed of 24 truncated octahedral cells, 24 cuboctahedral cells and 96 triangular prisms. Together they have 288 triangular faces, 432 square faces, 864 edges, and 288 vertices. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cantellated 24-cells」の詳細全文を読む スポンサード リンク
|